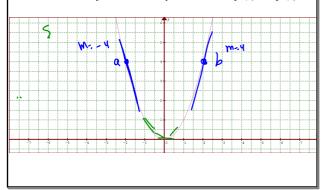


Calculus 120
Unit 5: Odds and Ends

May 30, 2019: Day #2

1. Finish Tests or Review

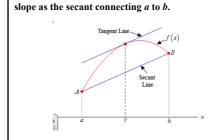
2. Mean Value Theorem


2. Hyperbolic Functions

Apr 28-7:29 PM

Jan 9-1:43 PM

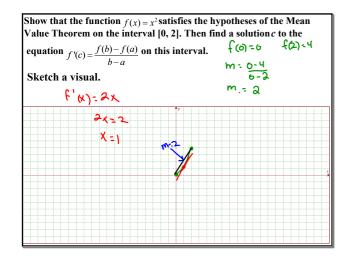
Intermediate Value Theorem for Derivatives

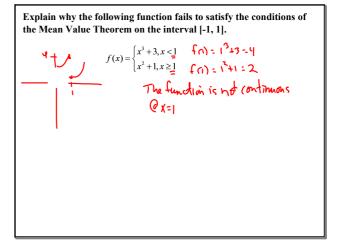

If a and b are any two points in an interval on which f is differentiable, then f' takes on every value between f'(a) and f'(b).

In other words, there is a tangent line in the interval that has the same

If y = f(x) is continuous at every point on the closed interval [a, b], and

differentiable at every point of its interior (a, b), then there is at least




one point c in (a, b), at which $f'(c) = \frac{f(b) - f(a)}{a}$.

Mean Value Theorem

May 29-1:09 PM

May 29-1:07 PM

Jun 4-11:52 AM Jun 4-11:53 AM

Let $f(x) = \sqrt{1-x^2}$, A = (-1, f(-1), and B = (1, f(1)). Find a tangent to f in the interval (-1, 1) that is parallel to the secant AB.

Joe left his house at 12:00 and arrived at his destination

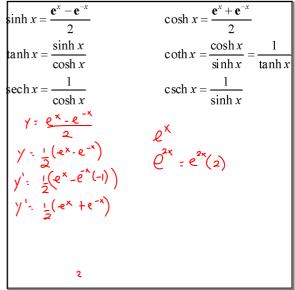
200 km away at 2:00. Joe's wife was sleeping for the entire trip. She woke up just as they arrived in town and Joe was driving the 80 km/h speed limit. Joe's wife is a Calculus teacher. How can she use the mean value theorem to prove that Joe must have been speeding?

May 29-1:10 PM

May 29-1:11 PM

Hyperbolic Functions

Picture cables, like power lines, which hang freely.


y= ex+0-x

Freely hanging cables such as this actually hang in curves called hyperbolic cosine curves.

The hyperbolic cosine function is defined as follows: $\cosh x = \frac{e^x + e^{-x}}{2}$

While this is more of an exponential function, it is given the name cosh x because its derivatives are very similar to those of the trig functions.

May 20-6:46 PM

May 20-6:55 PM

Derivatives of the Hyperbolic Trig. Functions
$$\frac{d}{dx}(\sinh x) = \cosh x$$

$$\frac{d}{dx}(\cosh x) = \sinh x$$

$$\frac{d}{dx}(\tanh x) = \operatorname{sech}^{2} x$$

$$\frac{d}{dx}(\coth x) = -\operatorname{csch}^{2} x$$

$$\frac{d}{dx}(\operatorname{csch} x) = -\operatorname{csch} x \tanh x$$

$$\frac{d}{dx}(\operatorname{csch} x) = -\operatorname{csch} x \coth x$$

$$\frac{d}{dx} \sin x = \cos x$$

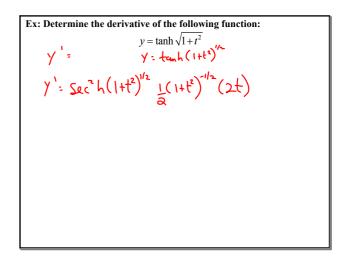
$$\frac{d}{dx} \csc x = -\operatorname{csc} x \cot x$$

$$\frac{d}{dx} \cos x = -\sin x$$

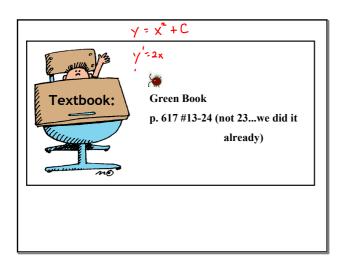
$$\frac{d}{dx} \cot x = -\operatorname{csc}^{2} x$$

$$y = e^{\cosh(5x)}$$

$$y' = e^{\cosh(5x)}$$


$$y' = e^{\cosh(5x)}$$

$$y = e^{\cosh(5x)}$$


$$y' = e^{\cosh(5x)}$$

Calculate the following derivative:
$$y = e^{\sinh(4x^2)}$$

$$y' = e^{\sinh(4x^2)} (\cosh(4x^2)) (8x)$$

Jun 7-3:03 PM May 20-6:59 PM

Jan 13-9:38 PM

Attachments

2.1_74_AP.html

2.1_74_AP.swf

2.1_74_AP.html